NATURE

Global hotspots of mycorrhizal fungal richness are poorly protected


  • Högberg, M. N. & Högberg, P. Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil. New Phytol. 154, 791–795 (2002).

    PubMed 

    Google Scholar
     

  • van Der Heijden, M. G., Martin, F. M., Selosse, M. A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406–1423 (2015).

    PubMed 

    Google Scholar
     

  • Hawkins, H. J. et al. Mycorrhizal mycelium as a global carbon pool. Curr. Biol. 33, R560–R573 (2023).

    PubMed 

    Google Scholar
     

  • Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guerra, C. A. et al. Tracking, targeting, and conserving soil biodiversity. Science 371, 239–241 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Větrovský, T. et al. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci. Data 7, 228 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tedersoo, L. et al. The Global Soil Mycobiome consortium dataset for boosting fungal diversity research. Fungal Divers. 111, 573–588 (2021).


    Google Scholar
     

  • Větrovský, T. et al. GlobalAMFungi: a global database of arbuscular mycorrhizal fungal occurrences from high‐throughput sequencing metabarcoding studies. New Phytol. 240, 2151–2163 (2023).

    PubMed 

    Google Scholar
     

  • Frey, S. D. Mycorrhizal fungi as mediators of soil organic matter dynamics. Annu. Rev. Ecol. Evol. Syst. 50, 237–259 (2019).


    Google Scholar
     

  • Tedersoo, L. & Bahram, M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biol. Rev. 94, 1857–1880 (2019).

    PubMed 

    Google Scholar
     

  • Brundrett, M. C. & Tedersoo, L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 220, 1108–1115 (2018).

    PubMed 

    Google Scholar
     

  • Crowther, T. W. et al. The global soil community and its influence on biogeochemistry. Science 365, eaav0550 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 5077 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kivlin, S. N., Hawkes, C. V. & Treseder, K. K. Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biol. Biochem. 43, 2294–2303 (2011).

    CAS 

    Google Scholar
     

  • Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).

    PubMed 

    Google Scholar
     

  • Větrovský, T. et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Commun. 10, 5142 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guerra, C. A. et al. Global hotspots for soil nature conservation. Nature 610, 693–698 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tedersoo, L. et al. Global patterns in endemicity and vulnerability of soil fungi. Global Change Biol. 28, 6696–6710 (2022).

    CAS 

    Google Scholar
     

  • Cameron, E. K. et al. Global mismatches in aboveground and belowground biodiversity. Conserv. Biol. 33, 1187–1192 (2019).

    PubMed 

    Google Scholar
     

  • Meyer, H. & Pebesma, E. Machine learning-based global maps of ecological variables and the challenge of assessing them. Nat. Commun. 13, 2208 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jansen, J. et al. Stop ignoring map uncertainty in biodiversity science and conservation policy. Nat. Ecol. Evol. 6, 828–829 (2022).

    PubMed 

    Google Scholar
     

  • Albuquerque, F., Astudillo-Scalia, Y., Loyola, R. & Beier, P. Towards an understanding of the drivers of broad-scale patterns of rarity-weighted richness for vertebrates. Biodivers. Conserv. 28, 3733–3747 (2019).


    Google Scholar
     

  • Kinlock, N. L. et al. Explaining global variation in the latitudinal diversity gradient: meta‐analysis confirms known patterns and uncovers new ones. Global Ecol. Biogeogr. 27, 125–141 (2018).


    Google Scholar
     

  • Sabatini, F. M. et al. Global patterns of vascular plant alpha diversity. Nat. Commun. 13, 4683 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toussaint, A. et al. Asymmetric patterns of global diversity among plants and mycorrhizal fungi. J. Veg. Sci. 31, 355–366 (2020).


    Google Scholar
     

  • Kokkoris, V. et al. Codependency between plant and arbuscular mycorrhizal fungal communities: what is the evidence? New Phytol. 228, 828–838 (2020).

    PubMed 

    Google Scholar
     

  • Read, D. J. Mycorrhizas in ecosystems. Experientia 47, 376–391 (1991).


    Google Scholar
     

  • Phillips, R. P., Brzostek, E. & Midgley, M. G. The mycorrhizal‐associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytol. 199, 41–51 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Jung, M. et al. Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nat. Ecol. Evol. 5, 1499–1509 (2021).

    PubMed 

    Google Scholar
     

  • Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, E2602–E2610 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kass, J. M. et al. The global distribution of known and undiscovered ant biodiversity. Sci. Adv. 8, eabp9908 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tedersoo, L. in Biogeography of Mycorrhizal Symbiosis Vol. 230 (ed. Tedersoo, L.) 469–531 (Springer, 2017).

  • Bingham, H. C. et al. Sixty years of tracking conservation progress using the World Database on Protected Areas. Nat. Ecol. Evol. 3, 737–743 (2019).

    PubMed 

    Google Scholar
     

  • Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS ONE 4, e8273 (2009).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van den Hoogen, J., van Nuland, M. & Kumar, S. Data and code for: Global Hotspots of Mycorrhizal Fungal Richness are Poorly Protected. Zenodo https://doi.org/10.5281/zenodo.14871588 (2025).

  • Lundberg, S. M. et al. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2, 56–67 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mikryukov, V. et al. Connecting the multiple dimensions of global soil fungal diversity. Sci. Adv. 9, eadj8016 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Averill, C., Turner, B. L. & Finzi, A. C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505, 543–545 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hicks Pries, C. E. et al. Differences in soil organic matter between EcM‐and AM‐dominated forests depend on tree and fungal identity. Ecology 104, e3929 (2023).

    PubMed 

    Google Scholar
     

  • Davison, J. et al. Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. New Phytol. 231, 763–776 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch-Mordo, S. & Kiesecker, J. Managing the middle: a shift in conservation priorities based on the global human modification gradient. Glob. Change Biol. 25, 811–826 (2019).

    ADS 

    Google Scholar
     

  • Chaudhary, V. B., Nolimal, S., Sosa‐Hernández, M. A., Egan, C. & Kastens, J. Trait‐based aerial dispersal of arbuscular mycorrhizal fungi. New Phytol. 228, 238–252 (2020).

    CAS 

    Google Scholar
     

  • Guerra, C. A. et al. Global projections of the soil microbiome in the Anthropocene. Global Ecol. Biogeogr. 30, 987–999 (2021b).


    Google Scholar
     

  • Guzman, A. et al. Crop diversity enriches arbuscular mycorrhizal fungal communities in an intensive agricultural landscape. New Phytol. 231, 447–459 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lang, N., Jetz, W., Schindler, K. & Wegner, J. D. A high-resolution canopy height model of the Earth. Nat. Ecol. Evol. 7, 1778–1789 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barron, E. Conservation of abundance: How fungi can contribute to rethinking conservation. Conserv. Soc. 21, 99–109 (2023).


    Google Scholar
     

  • Guerra, C. A. et al. Blind spots in global soil biodiversity and ecosystem function research. Nat. Commun. 11, 3870 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Senior, R. A. et al. Global shortfalls in documented actions to conserve biodiversity. Nature 630, 387–391 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Labouyrie, M. et al. Patterns in soil microbial diversity across Europe. Nat. Commun. 14, 3311 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Averill, C. et al. Defending Earth’s terrestrial microbiome. Nat. Microbiol. 7, 1717–1725 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Fleischman, F. et al. Restoration prioritization must be informed by marginalized people. Nature 607, E5–E6 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Langhammer, P. F. et al. The positive impact of conservation action. Science 384, 453–458 (2024).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lutz, S. et al. Global richness of arbuscular mycorrhizal fungi. Fungal Ecol. 74, 101407 (2025).


    Google Scholar
     

  • Tedersoo, L. & Lindahl, B. Fungal identification biases in microbiome projects. Environ. Microbiol. Rep. 8, 774–779 (2016).

    PubMed 

    Google Scholar
     

  • Yang, R. H. et al. Evaluation of the ribosomal DNA internal transcribed spacer (ITS), specifically ITS1 and ITS2, for the analysis of fungal diversity by deep sequencing. PLoS ONE 13, 206428 (2018).


    Google Scholar
     

  • Bengtsson‐Palme, J. et al. Improved software detection and extraction of ITS1 and ITS 2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol. Evol. 4, 914–919 (2013).


    Google Scholar
     

  • Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Põlme, S. et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105, 1–16 (2020).


    Google Scholar
     

  • Öpik, M. et al. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol. 188, 223–241 (2010).

    PubMed 

    Google Scholar
     

  • Bruns, T. D. & Taylor, J. W. Comment on “Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism”. Science 351, 826–826 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).


    Google Scholar
     

  • Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).


    Google Scholar
     

  • Bissett, A. et al. Introducing BASE: the Biomes of Australian Soil Environments soil microbial diversity database. GigaScience 5, s13742-016 (2016).


    Google Scholar
     

  • Yan, D. et al. High-throughput eDNA monitoring of fungi to track functional recovery in ecological restoration. Biol. Conserv. 217, 113–120 (2018).


    Google Scholar
     

  • Usher, M. B. in Wildlife Conservation Evaluation (ed. Usher, M. B.) 3–44 (Chapman & Hall, 1986).

  • Albuquerque, F. & Beier, P. Predicted rarity‐weighted richness, a new tool to prioritize sites for species representation. Ecol. Evol. 6, 8107–8114 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • van den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).

    ADS 
    PubMed 

    Google Scholar
     

  • van den Hoogen, J. et al. A global database of soil nematode abundance and functional group composition. Sci. Data 7, 103 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herrando-Moraira, S. et al. Climate Stability Index maps, a global high resolution cartography of climate stability from Pliocene to 2100. Sci. Data 9, 48 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruesch, A. & Gibbs, H. K. New IPCC Tier-1 global biomass carbon map for the year 2000. ESS-DIVE https://doi.org/10.15485/1463800 (2008).

  • Tuanmu, M. N. & Jetz, W. A global 1‐km consensus land‐cover product for biodiversity and ecosystem modelling. Global Ecol. Biogeogr. 23, 1031–1045 (2014).


    Google Scholar
     

  • Tuanmu, M. N. & Jetz, W. A global, remote sensing‐based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Global Ecol. Biogeogr. 24, 1329–1339 (2015).


    Google Scholar
     

  • Cai, L. et al. Global models and predictions of plant diversity based on advanced machine learning techniques. New Phytol. 237, 1432–1445 (2023).

    PubMed 

    Google Scholar
     

  • Trabucco, A. & Zomer, R. J. Global aridity index and potential evapo-transpiration (ET0) climate database v2. figshare https://doi.org/10.6084/m9.figshare.7504448.v3 (2019).

  • Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ploton, P. et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 11, 4540 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wadoux, A. M. C., Heuvelink, G. B., De Bruin, S. & Brus, D. J. Spatial cross-validation is not the right way to evaluate map accuracy. Ecol. Modell. 457, 109692 (2021).


    Google Scholar
     

  • Meyer, H. & Pebesma, E. Predicting into unknown space? Estimating the area of applicability of spatial prediction models. Methods Ecol. Evol. 12, 1620–1633 (2021).


    Google Scholar
     

  • Milà, C., Mateu, J., Pebesma, E. & Meyer, H. Nearest neighbour distance matching leave‐one‐out cross‐validation for map validation. Methods Ecol. Evol. 13, 1304–1316 (2022).


    Google Scholar
     

  • Linnenbrink, J., Milà, C., Ludwig, M. & Meyer, H. kNNDM CV: k-fold nearest-neighbour distance matching cross-validation for map accuracy estimation. Geosci. Model Dev. 17, 5897–5912 (2024).


    Google Scholar
     

  • Phillips, H. R. et al. Global distribution of earthworm diversity. Science 366, 480–485 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Potapov, A. M. et al. Globally invariant metabolism but density–diversity mismatch in springtails. Nat. Commun. 14, 674 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hiemstra, P. H., Pebesma, E. J., Twenhöfel, C. J. & Heuvelink, G. B. Real-time automatic interpolation of ambient gamma dose rates from the Dutch radioactivity monitoring network. Comput. Geosci. 35, 1711–1721 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Parry J. sfdep: Spatial Dependence for Simple Features. R package version 0.2.3 https://CRAN.R-project.org/package=sfdep (2023).

  • Dormann, C. F. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography 30, 609–628 (2007).

    ADS 

    Google Scholar
     

  • Dray S. et al. adespatial: Multivariate Multiscale Spatial Analysis. R package version 0.3-21 https://CRAN.R-project.org/package=adespatial (2023).

  • Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R (Springer, 2018).

  • Zhu, K., Woodall, C. W. & Clark, J. S. Failure to migrate: lack of tree range expansion in response to climate change. Glob. Change Biol. 18, 1042–1052 (2012).

    ADS 

    Google Scholar
     

  • Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).

    ADS 

    Google Scholar
     

  • Liang, J. et al. Co-limitation towards lower latitudes shapes global forest diversity gradients. Nat. Ecol. Evol. 6, 1423–1437 (2022).

    PubMed 

    Google Scholar
     

  • The IUCN Red List of Threatened Species Version 2022-2 (IUCN, 2022); https://www.iucnredlist.org.



  • Source link

    Related Articles

    Back to top button