Shell buckling for programmable metafluids
Engheta, N. & Ziolkowski, R. W. Metamaterials: Physics and Engineering Explorations (Wiley, 2006).
Craster, R. V. & Guenneau, S. Acoustic Metamaterials: Negative Refraction, Imaging, Lensing and Cloaking Vol. 166 (Springer Science & Business Media, 2012).
Deymier, P. A. Acoustic Metamaterials and Phononic Crystals Vol. 173 (Springer Science & Business Media, 2013).
Maldovan, M. Narrow low-frequency spectrum and heat management by thermocrystals. Phys. Rev. Lett. 110, 025902 (2013).
Bertoldi, K., Vitelli, V., Christensen, J. & Van Hecke, M. L. Flexible mechanical metamaterials. Nat. Rev. Mater. 2, 17066 (2017).
Kadic, M., Bückmann, T., Schittny, R. & Wegener, M. Metamaterials beyond electromagnetism. Rep. Prog. Phys. 76, 126501 (2013). ISSN 0034-4885.
Christensen, J., Kadic, M., Kraft, O. & Wegener, M. Vibrant times for mechanical metamaterials (book review). MRS Commun. 5, 453–462 (2015).
Lee, G. et al. Piezoelectric energy harvesting using mechanical metamaterials and phononic crystals. Commun. Phys. 5, 94 (2022).
Xu, X. et al. Multifunctional metamaterials for energy harvesting and vibration control. Adv. Funct. Mater. 32, 2107896 (2022).
Hu, G., Tang, L., Liang, J., Lan, C. & Das, R. Acoustic-elastic metamaterials and phononic crystals for energy harvesting: a review. Smart Mater. Struct. 30, 085025 (2021).
Chen, Z., Guo, B., Yang, Y. & Cheng, C. Metamaterials-based enhanced energy harvesting: a review. Physica B 438, 1–8 (2014).
Fowler, C., Silva, S., Thapa, G. & Zhou, J. High efficiency ambient RF energy harvesting by a metamaterial perfect absorber. Opt. Mater. Express 12, 1242–1250 (2022).
Ramahi, O. M., Almoneef, T. S., AlShareef, M. & Boybay, M. S. Metamaterial particles for electromagnetic energy harvesting. Appl. Phys. Lett. 101, 173903 (2012).
Lin, Keng-Te., Lin, H., Yang, T. & Jia, B. Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion. Nat. Commun. 11, 1389 (2020).
Cortés, E. et al. Optical metasurfaces for energy conversion. Chem. Rev. 122, 15082–15176 (2022).
Patel, S. K., Surve, J., Katkar, V. & Parmar, J. Optimization of metamaterial-based solar energy absorber for enhancing solar thermal energy conversion using artificial intelligence. Adva. Theory Simul. 5, 2200139 (2022).
Chen, T., Li, S. & Sun, H. Metamaterials application in sensing. Sensors 12, 2742–2765 (2012).
Molerón, M. & Daraio, C. Acoustic metamaterial for subwavelength edge detection. Nat. Commun. 6, 8037 (2015).
Fan, W., Yan, B., Wang, Z. & Wu, L. Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies. Sci. Adv. 2, e1600901 (2016).
Urzhumov, Y. A. et al. Plasmonic nanoclusters: a path towards negative-index metafluids. Opt. Express 15, 14129–14145 (2007).
Sheikholeslami, S. N., Alaeian, H., Koh, Ai. Leen. & Dionne, J. A. A metafluid exhibiting strong optical magnetism. Nano Lett. 13, 4137–4141 (2013).
Yang, J. et al. Broadband absorbing exciton-plasmon metafluids with narrow transparency windows. Nano Lett. 16, 1472–1477 (2016).
Hinamoto, T., Hotta, S., Sugimoto, H. & Fujii, M. Colloidal solutions of silicon nanospheres toward all-dielectric optical metafluids. Nano Lett. 20, 7737–7743 (2020).
Kim, K., Yoo, SeokJae, Huh, Ji-Hyeok, Park, Q.-Han & Lee, S. Limitations and opportunities for optical metafluids to achieve an unnatural refractive index. ACS Photon. 4, 2298–2311 (2017).
Cho, Y. et al. Using highly uniform and smooth selenium colloids as low-loss magnetodielectric building blocks of optical metafluids. Opt. Express 25, 13822–13833 (2017).
Brunet, T. et al. Soft 3D acoustic metamaterial with negative index. Nat. Mater. 14, 384–388 (2015).
Peretz, O., Ben Abu, E., Zigelman, A., Givli, S. & Gat, A. D. A metafluid with multistable density and internal energy states. Nat. Commun. 13, 1810 (2022).
Djellouli, A., Marmottant, P., Djeridi, H., Quilliet, C. & Coupier, G. Buckling instability causes inertial thrust for spherical swimmers at all scales. Phys. Rev. Lett. 119, 224501 (2017).
Jambon-Puillet, E., Jones, T. J. & Brun, P.-T. Deformation and bursting of elastic capsules impacting a rigid wall. Nat. Phys. 16, 585–589 (2020).
Utada, A. S. Monodisperse double emulsions generated from a microcapillary device. Science 308, 537–541 (2005).
Chen, Q. Robust fabrication of ultra-soft tunable PDMS microcapsules as a biomimetic model for red blood cells. Soft Matter 19, 5249–5261 (2023).
Puglisi, G. & Truskinovsky, L. Mechanics of a discrete chain with bi-stable elements. J. Mech. Phys. Solids 48, 1–27 (2000).
Benichou, I. & Givli, S. Structures undergoing discrete phase transformation. J. Mech. Phys. Solids 61, 94–113 (2013).
Nagelberg, S. et al. Reconfigurable and responsive droplet-based compound micro-lenses. Nat. Commun. 8, 14673 (2017).
Guazzelli, É., Morris, J. F. & Pic, S. A Physical Introduction to Suspension Dynamics Cambridge Texts in Applied Mathematics (Cambridge Univ. Press, 2011).
Shewan, H. M. & Stokes, J. R. Viscosity of soft spherical micro-hydrogel suspensions. J. Colloid Interface Sci. 442, 75–81 (2015).
Shewan, H. M. & Stokes, J. R. Analytically predicting the viscosity of hard sphere suspensions from the particle size distribution. J. Nonnewton. Fluid Mech. 222, 72–81 (2015).
Dressaire, E. & Sauret, A. Clogging of microfluidic systems. Soft Matter 13, 37–48 (2017).
Chien, S., Usami, S. & Bertles, J. F. Abnormal rheology of oxygenated blood in sickle cell anemia. J. Clin. Invest. 49, 623–634 (1970).